Multifunctional materials are receiving considerable world-wide attention as potential switchable elements in information storage and molecule-based device technologies. The first photoswitchable Prussian blue was reported by Hashimoto in 1996, where dramatic color and magnetism changes are seen owing to thermally- and light-induced electron transfer that interconverts diamagnetic FeIILS/CoIIILS and paramagnetic FeIIILS/CoIIHS pairs.1 In 2008, we reported a molecular \{Fe\textsubscript{4}Co\textsubscript{4}\} box that mimics the thermally- and optically-induced changes seen in thermo- and photochromic Fe/Co Prussian blues, (\(T_{1/2} \sim 252\) K); a remarkably long-lived photo-induced state is also seen (\(\tau \sim 10\) y at 120 K);2 the first bistable \{Fe\textsubscript{2}Co\textsubscript{2}\} square that displays qualitatively similar behavior (\(T_{1/2} \sim 177\) K; \(\tau \sim 3\) d at 120 K) was later reported in 2010.3 The temperature- and light-dependent magnetic, spectroscopic, and structural data indicate that intramolecular electron transfer may be tuned as a function of ancillary ligand donor strength and in some cases, their solid state contacts.4 Several structurally related bistable clusters will be described in the frame of their intermolecular contacts and thermo- and photochromic behavior.