

COURSE CHEM 221 MATERIALS, SOLUTIONS AND INTERFACES

GENERAL INFORMATION

Course instructor	Dr. Jean-Michel Nunzi
	CHE 310, Chernoff Hall
	Phone: 36749
	E-mail: <u>nunzijm@queensu.ca</u>
Lab instructor	Dr. Igor Kozin
	CHE 124, Chernoff Hall
	Phone: 36000, ext. 74665
	E-mail: <u>igor.kozin@chem.queensu.ca</u>
Web site	Access CHEM 221 OnQ space at: <u>https://onq.queensu.ca/</u>
	active enrolment required.
Lectures	STIRLING RM B
	Schedule: Mon. 10:30-11:30; Wed. 09:30-10:30; Friday 08:30-09:30.
Office hours	Friday. 09:30-11:30 – or by virtual appointment
Required textbook	Lectures: P. Atkins, J. de Paula, <i>Physical Chemistry</i> , 11 th , 10 th or 9 th
-	Edition, W. H. Freeman & Co., New York
	Tutorials: P. Atkins, C. A. Trapp, M. P. Cady, C. Giunta, Student
	Solutions Manual for Physical Chemistry, 10th or 9th Edition, W. H.
	Freeman & Co., New York
	Laboratory: Laboratory Manual
Recommended	MS Excel
software	
Laboratory	Monday 14:30 – 17:30 RM 210B
Laboratory	
Tutorials	CHERNOFF RM211 / RM 213
Monday	During tutorials, textbook problems will be solved step-by-step.
08:30 - 09:30	
Marking	Laboratory reports: 25%
_	Quiz $(2 \times 10\%)$: 20% in class 1 st Quiz Feb; 2 nd Quiz 2 March
	Midterm examination: 25% 2h after mid-term
	Final examination: 30% 3h exam end of term
	Total 100 %

A common equation sheet will append each quiz as well as the
midterm and final examinations. You may use this equation sheet
during the quizzes and the examinations.
Students must pass BOTH the lecture/tutorial and the laboratory
components to pass the course. Students must obtain a weighted
average mark of OVER 50% on the written exams to pass the
lecture/tutorial component. If a student does not pass the
lecture/tutorial and the lab components of the course, they will
fail the entire course. Students who do not attend all laboratory
sessions may be assigned a grade of incomplete (IN) and be
required to attend and pass the missed lab(s) the following year
before the IN is cleared from their transcript.

COURSE OUTLINE

1. Overview of first law of thermodynamics

Overview of basic concepts learnt in the first-year chemistry course;

Thermochemistry; State functions and exact differentials; *Chapter 2 in all editions*. (4 lectures)

2. Overview of the second and third laws of thermodynamics

Direction of spontaneous change; Helmholtz and Gibbs energies; Combining the first and second laws; *Chapter 3 in all editions*. (4 lectures)

3. Phase transitions and Simple mixtures

Phase diagrams; Thermodynamic aspects of phase diagrams; *Chapter 4 in all editions*. (1 lecture)

Thermodynamic description of mixtures; Properties of solutions; Phase diagrams of binary systems; Activities; *Chapter 5 in all editions*. (7 lectures)

4. Equilibrium electrochemistry

Half-reactions and electrodes; Varieties of cells; The cell potential; Standard electrode potentials; Application of standard potentials; *Chapter 6 in all editions*. (3 lectures)

5. Solids

Crystallography; The properties of solids; *Chapter 15 in the 11th, Chapter 18 in the 10th and Chapter 19 in the 9th edition*. (3 lectures)

6. Molecular interactions

Electric properties of molecules; Interactions between molecules; Gases and liquids; *Chapter 14 in the 11th edition, Chapter 16 in the 10th and Chapter 17 in the 9th*. (2 lectures)

7. Molecules in motion (subject will be covered if time allows)

Molecular motion; Molecular motion in liquids; Diffusion; *Chapter 16 in the 11th*, *Chapter 19 in the 10th and Chapter 20 in the 9th edition*.

Learning Outcomes

Students will know the basics of thermodynamics, 1st and 2nd principles, state functions, their meaning, and understand how to use them in a variety of contexts: Phase transitions, simple mixtures and equilibrium electrochemistry in particular. They will also know the properties of solids, how to measure them and they will understand how to bind these properties together using their atomic composition and organization. They will know how molecules interact together and understand how their properties can be calculated out of these interactions.

Using their course notes or an equation sheet, students will apply these properties to the resolution of simple problems which are representative of practical situations faced in a chemistry laboratory: from the understanding of characterization methods to the analysis of physicochemical relationships between atom and molecules and their properties. They will know how to deal with dimensions, units, and how to convert them.

Academic Integrity

Academic integrity is constituted by the five core fundamental values of honesty, trust, fairness, respect and responsibility (see *www.academicintegrity.org*). These

values are central to the building, nurturing and sustaining of an academic community in which all members of the community will thrive. Adherence to the values expressed through academic integrity forms a foundation for the "freedom of inquiry and exchange of ideas" essential to the intellectual life of the University (see the Senate Report Principles and Priorities on at: http://www.queensu.ca/secretariat/policies/senateandtrustees/principlespriorities.html. Students are responsible for familiarizing themselves with the regulations concerning academic integrity and for ensuring that their assignments conform to the principles of academic integrity. Information on academic integrity is available in the Arts and Science Calendar (see Academic Regulation 1 at: http://www.queensu.ca/artsci/academic-calendars/2011-2012-calendar/academic-Science regulations/regulation-1 the Arts and website on (http://www.queensu.ca/artsci/academics/undergraduate/academic-integrity), and from the instructor of this course. Departures from academic integrity include plagiarism, use of unauthorized materials, facilitation, forgery and falsification, and are antithetical to the development of an academic community at Queen's. Given the seriousness of these matters, actions, which contravene the regulation on academic integrity, carry sanctions that can range from a warning or the loss of grades on an assignment to the failure of a course to a requirement to withdraw from the university.

Copyright of Course Materials

This material, including that on the CHEM 221 Moodle website, is copyrighted and is for the sole use of students registered in CHEM 221. The material on this website may be downloaded for a registered student's personal use but shall not be distributed or disseminated to anyone other than students registered in CHEM 221. Failure to abide by these conditions is a breach of copyright and may also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.