Name: Dr. Md. Shahiduzzaman

Affiliation: Assistant Professor, Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Japan

Bibliography: Dr. Md. Shahiduzzaman is an Assistant Professor (Tenure Track) at the Nanomaterials Research Institute (NanoMaRi), Kanazawa University where he designs, fabricates and develops highly efficient and stable perovskite solar cells (PSCs) for next-generation solar cells. Born in Bangladesh in 1984, Dr. Shahiduzzaman moved to Japan for postgraduate study in 2011. He obtained a Master degree in Thermoelectric Materials & Application from Japan Advanced Institute Science & Technology in 2013 and did his Ph.D. on PSCs from Kanazawa University in 2016. Then, twice he did post-doctoral before joining at NanoMaRi. Then, he was an Assistant professor (Fixed Term) up to October, 2022. He published 4 patents and over 100 peer-reviewed articles until the date.

Summary of My Presentation:

Title: High Stable Perovskite Solar Cells using Ionic-liquid Addition and Cesium Halides Intercalation Technology

The rapid development of perovskite solar cells with a certified power conversion efficiency (PCE) of 25.7% is already at the level of commercialization. Still, long-term operational stability has become a major concern owing perovskite's intrinsically soft ionic crystal structures. Very recently, we used the ionic liquid (IL) aided-CH₃NH₃PbI₃ (MAPbI₃) perovskite nanoparticles (NPs) as a seeded-growth approach to fabricate high moisture-stable perovskite solar cells with a PCE of around 20%.¹ It retained above 80% of its initial output even after 6000 hours of storage at ambiance with relative humidity (RH) range of 30–40% (non-encapsulated). In the first half, we found that IL-aided MAPbI₃ NPs form in the grain boundary of the CsFAMA perovskite crystal domains. This implies that the embedding of IL-aided MAPbI₃ NPs in the CsFAMA perovskite crystal domain showed increased hydrophobicity (water contact angle of 72.3°) than pristine CsFAMA (water contact angle of 54.1°) by repelling moisture and preventing drop water infiltration under humid conditions.

In the second half, I will talk about cesium halides (CsX: CsCl, CsBr, CsI) intercalation technology for efficient and stable PSCs. Previously, we intercalated vacuum deposited cesium iodide (CsI) into solution processed host MAPbI₃ perovskite framework and achieved a PCE of 18.43% and remained above 80% of their initial output after 6000 h storage in open air (non-encapsulated) for the first time.² In this study, we introduced vacuum deposited CsX (CsCl, CsBr and CsI) thin layers into solution processed host MAPbI₃ perovskite film from the up, down or both layers to promote precise intercalation, resulted in high-quality perovskite film for high stable PSCs. The use of CsX layer greatly altered the MAPbI₃ morphology to produce large grain sizes, as a result of the precise intercalation of the CsX molecules into the host MAPbI₃. We tested moisture stability for 3000 h storage at ambient with a RH range of 50–60% (non-encapsulated), Cs-containing perovskite films showed higher stability (no color changed, retained black) than pristine MAPbI₃ film (color changed and degraded).

References

(1) M. Shahiduzzaman, J. M. Nunzi, T. Taima, ACS Applied Materials & Interfaces **2021**, 13, 21194-21206.

(2) M. Shahiduzzaman, J. M. Nunzi, T. Taima, Nano Energy 2021, 86, 106135.